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Abstract
On the basis of the multichannel Landauer formula, we investigated the
effects of incommensurability on the electron transport properties of clean
incommensurate double-walled carbon nanotubes (DWNTs). The results
obtained clearly show that electron transport in incommensurate DWNTs can
be either ballistic or non-ballistic depending on the energy region. In the lower
energy region, the conductances remain at 2G0 (where G0 = 2e2/h is the
conductance quantum) except for at a very few positions, at least up to the
system length of about 1.4 µm. And with increasing length, the conductances
tend to change from 2G0 to 1G0 due to the antiresonances. This offers a possible
explanation for the measurement results reported by Frank et al (1998 Science
280 1744) and by Urbina et al (2003 Phys. Rev. Lett. 90 106603). In the other
energy regions, electron transport is non-ballistic and the conductances show a
power law decay.

(Some figures in this article are in colour only in the electronic version)

Carbon nanotubes (CNTs) have attracted much attention due to their remarkable electronic
and mechanical properties, and seem promising for nanoscale electronic device use [1]. One
of the most interesting characteristics of the single-walled carbon nanotubes (SWNTs) is
that their electronic properties are strongly dependent on their geometry [2, 3]. Moreover,
combined systems formed from SWNTs, such as multi-walled carbon nanotubes (MWNTs)
and bundles of closely packed SWNTs, show many unique physical properties [4–18]. Due to
their complex lattice structures, there are more mechanisms which may affect their physical
properties significantly [4, 6, 12–18]. Until now, these complicated physical properties, such as
transport properties, have remained poorly understood and even controversial; much evidence
for a diffusive regime [7, 8] and quantum interference effects has also been found [9, 10], and
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it is also undecided why the observed ballistic conductance of MWNTs can be either 1G0 [9]
or 2G0 [10].

A number of studies have been carried out to demonstrate the effects of incommensurability
on electron transport properties of incommensurate MWNTs. For example, Roach et al, on
the basis of the calculated spreading properties of wavepackets, infer that, in incommensurate
MWNTs, electronic propagation follows a non-ballistic law [16]. Recently, Ahn et al made
a spectral analysis of the energy levels of clean incommensurate MWNTs, and found that
the level statistics is similar to that of the Anderson metal–insulator transition [17]. Very
recently, Uryu [18] directly calculated the conductance of DWNTs with length shorter than
2000 nm; the results obtained show a clearer picture of the incommensurate DWNT transport
properties: scattering in the bulk is negligible and the number of channels determines the
average conductance. In addition, Uryu found that in some cases antiresonances with
edge states in inner tubes cause an anomalous conductance quantization 1G0, near the
Fermi energy.

In this paper, we calculate conductances of the longer incommensurate DWNTs, and
pay further attention to the properties of antiresonance induced by the quasi-bound state and
its effects on conductances of the longer incommensurate DWNTs. We find that the quasi-
bound states are sited not only near the edges of DWNTs but also in other places. Hence,
with increasing length of the tube, the probability of a 1G0 dip induced by the antiresonance
may be enhanced, thus influencing the conductance of the longer incommensurate DWNTs
significantly.

In the calculation of conductance, the whole system is considered as composed of a left-
hand lead plus a DWNT and then a right-hand lead (L–D–R). Experimentally, one makes
electrical contacts mainly with the outer tube and the coupling with the inner tube is very weak
due to the very large anisotropy of the graphitic material [7]. For simplicity, here, the two leads
are taken as SWNTs which are of the same type as the outer tube of the corresponding DWNT.
This problem is most conveniently treated by the Green function matching method [19, 20].
The conductance is expressed using the Landauer formula:

C = (2e2/h) Tr[�LGr
D�RGa

D], (1)

where

GD = (ε − HD − h†
LDgLhLD − h†

RDgRhRD)−1, (2)

and

�L,R = ih†
L,RD(gr

L,R − ga
L,R)hL,RD. (3)

Here, HD is the Hamiltonian of the DWNT; hL,D (hR,D) is the matrix of the coupling
between the DWNT and the left (right) lead. gL and gR are the Green functions due to the
semi-infinite left and right leads, which are calculated using an iterative procedure [21].

Our model Hamiltonian is a tight binding one, which successfully describes the electronic
structure of the MWNTs [16, 17]. In this model, one pπ orbital per carbon atom is retained,
with zero on-site energies, whereas constant nearest neighbour hopping on each layer n (nn)
and hopping between neighbouring layers (mn) are considered; the Hamiltonian is written as
follows:

H = γ0

∑

i jnn

(c†
inc jn + H.c.) − β

∑

i jmn

(cos(θi j)e(a−di j )/δc†
imc jn + H.c.), (4)

where cin (c†
in) denotes the annihilation (creation) operator of an electron on a C pπ orbital at

site i and n is the SWNT index. γ0 is the parameter for hopping between intra-layer nearest
neighbour sites, i and j , and β is the strength of interwall interactions between interlayer sites,
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Figure 1. ((a), (b)) LDOSs at different space positions near the boundary of the (9, 0)@(10, 10)
DWNT with the length of 7.38 nm. ((c)–(e)) The conductance of (9, 0)@(10, 10) DWNTs with
different lattice lengths, of 7.38 nm, 246 nm and 1.48 µm, respectively. The dashed curves represent
the conductance of an individual (10, 10) tube.

i and j , at the distance di j and with a cut-off for di j > 0.39 nm. θi j is the angle between the
two pπ orbitals. The parameters used here are γ0 = 2.9 eV, β = γ0/8.0, a = 0.334 nm and
δ = 0.045 nm.

We have studied some finite-sized incommensurate DWNTs, such as (9, 0)@(10, 10),
(8, 1)@(10, 10), (8, 2)@(10, 10) and (5, 5)@(18, 0) DWNTs, and found that they have similar
electron transport properties. Therefore, below, we choose the incommensurate (9, 0)@(10, 10)
DWNT as a typical case to study. We will show the energy dependence of the conductance
and investigate the system size dependence of the conductance.

Some local densities of states (LDOSs) and conductances obtained for the incommensurate
(9, 0)@(10, 10) DWNT are shown in figure 1. From figures 1(c)–(e) we found that the
conductances of the (9, 0)@(10, 10) DWNT strongly depend on the energy region. In the
energy region from −0.9 to 0.9 eV (i.e., between the two first van Hove singularities (vHss) of
the outer (10, 10) tube), the value of the conductance is equal to that of the individual (10, 10)
tube except at a very few energy positions. However, in the other energy regions, conductances
fluctuate and decrease with respect to that of an individual (10, 10) tube. Correspondingly, the
LDOS curves (see figures 1(a) and (b)) in the energy region from −0.9 to 0.9 eV seem smoother
than those for the other energy regions. This is similar to the case for quasicrystals [22]. These
energy dependent behaviours may be due to the two bands near the Fermi level, for neutral
metallic SWNTs, being protected against backward scattering due to a certain symmetry of the
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Figure 2. ((a), (b)) Conductances of (9, 0)@(10, 10) DWNTs with different lattice lengths, of 24.6
and 36.9 µm, respectively.

tube states, while the other bands are not [23]. It is also interesting to note that the value of the
conductance near the 0.0 eV position is equal to zero, which is associated with the localized
states near the sample boundary (see the LDOS near the boundary for the DWNT shown in
figures 1(a) and (b)). Clearly, the above results are in good agreement with those reported
in [17] and [18].

Now, we focus on the 1G0 dip of the conductance at the few positions in the energy range
from −0.9 to 0.9 eV shown in figures 1(c) (indicated by the arrow), (d) and (e). We take the
whole system as a quantum wire (the outer (10, 10) tube) attached to a resonator (the inner
(9, 0) tube) [24]. In this energy region, the transmission probability of the outer (10, 10) tube
is T = 2. This can be separated into T> and T<, corresponding to more and less transmissive
eigenchannels through the device, respectively; T = T> + T< and Tr(t t†t t†) = T 2

< + T 2
> [25].

It is found that, when T = 1 (i.e., the value of the conductance is equal to 1G0), T> = 1
while T< = 0. On the other hand, for the example shown in figures 1(a) and (b) indicated
by the arrows, one of the LDOSs has a high peak shape in the corresponding energy position;
however, the other only has a small peak, which indicates the existence of a quasi-bound state.
Thus the 1G0 dip of the conductance may be due to the antiresonance produced by a destructive
interference of the two transmissions via the bound and extended states [24, 25]. Our studies
show that the quasi-bound states may exist both near the edge of the DWNT and in other
places. Due to the complex lattice structure, it is hard to predict where antiresonances may
arise; however, it is expected that the numbers of antiresonances will increase with increasing
tube length.

Therefore, we study the length dependence of the conductance. From figures 1(c)–(e) we
notice that, in the energy region from −0.9 to 0.9 eV, the conductances remain at 2G0 except at
a very few energy positions, which indicates that the electron transport in this region is ballistic
at least up to the system length of about 1.4 µm. Since the numbers of antiresonances may
increase with increasing system length, we calculated conductances of longer (9, 0)@(10, 10)
DWNTs; the results obtained are shown in figure 2. It is clear that, in the energy region
from −0.9 to 0.9 eV, with increasing system length (see figure 2(a)) the conductances tend to
be 1G0 at more and more energy positions, and there also exist a few energies at which the
conductances become less than 1G0. On further increasing the lattice length to 36.9 µm (see
figure 2(b)), there appear more zero conductances at a lot of energy positions, which can be
seen clearly in the energy region from 0.6 to 0.9 eV. But the electron transport can remain
ballistic.
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Figure 3. (a) The length dependences of the average conductances and (b) the log–log plot for
different energy regions (upward pointing triangles: from −2.75 to −2.65 eV; downward pointing
triangles: from −1.65 to −1.55 eV). The dashed lines fitting g(L) ∼ αL−b are superimposed
in (b).

It is interesting to note that recently Urbina et al [10] reported that the conductance of the
MWNTs remains fixed at 2G0 when the system length is about 1.4 µm. Meanwhile, some of
their observed conductance steps show clear deviations from the quantized values even after
taking into consideration the noise of the measurements, which is more pronounced at the end
of the step. On the other hand, Frank et al [9] found 1G0 conductance in the MWNTs, where
the measured MWNTs are embedded in fibres with a length of about 1 mm. Obviously, our
results obtained for the conductance change with increasing system length, shown in figures 1
and 2, give a possible explanation for the measured conductances of the MWNTs reported
in [9] and [10].

In the higher energy regions, from figures 1(b)–(d) we found that the conductances have
a monotonic decreasing trend with increase of the lattice length. Due to the strong fluctuation
of the conductance, here we have to employ the average conductance in a very narrow energy
region in our detailed study. The length dependences of the average conductance obtained in
the two energy regions (from −2.75 to −2.70 eV and from −1.45 to −1.40 eV) and a log–log
plot are shown in figure 3. Obviously, although the value of the conductance fluctuates with
change of the length, the conductance tends to decrease with increase of the lattice length, and
the log–log plot shows a power law decay. Thus we may expect the wavefunctions to be power
law localized in the thermodynamic limit, and the electron transport is hence diffusive [26].
The difference of the exponents of the power law decay in different energy regions indicates
that the diffusive behaviour is also dependent on the energy positions—since in MWNTs on
top of metallic gates the details of contacts, local excessive charges and depletion of charge
carriers may change the position of the Fermi level [27, 28]. On the basis of our calculations,
we guess that in conductance measurements [7, 8] the Fermi level is shifted to the higher
energy region.
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Figure 4. Conductances of finite-sized commensurate DWNTs: (a) the (5, 5)@(10, 10) DWNT
with the length of 123 nm; (b) the (5, 5)@(10, 10) DWNT with the length of 246 nm; (c) the
(9, 0)@(18, 0) DWNT with the length of 150 nm. The dashed curves represent the conductance of
the individual outer tube of the corresponding DWNT.

Finally, for comparison, on the basis of the same model, we simply discuss electron
transport properties of finite-sized commensurate DWNTs, such as (5, 5)@(10, 10) and
(9, 0)@(18, 0) DWNTs. Some of the results obtained are shown in figure 4. Clearly, the
conductances of the finite-sized commensurate DWNTs are very different from those of the
incommensurate ones. The conductances of the finite-sized commensurate DWNTs have
ordered fluctuation, but do not decrease monotonically with increasing system length in any
energy region. Whereas, the conductance fluctuation properties are dependent on the tube
helicity, the conductance of the (5, 5)@(10, 10) DWNT has slow and rapid fluctuations;
however, the conductance of the (9, 0)@(18, 0) DWNT has no ordered slow fluctuation.
References [29] and [30] have discussed the similar fluctuation behaviours occurring in
SWNTs, which may be helpful for understanding the above-mentioned fluctuations in finite-
sized commensurate DWNTs. Detailed study is beyond the scope of this paper however, so
we leave this issue to future study.

In summary,our studies show that the incommensurability of the incommensurate DWNTs
may produce significant effects on their electron transport properties. In the lower energy
region, conductances remain at 2G0 except for at a very few positions at least up to the system
length of about 1.4 µm. And with increase of the length, the conductances tend to change
from 2G0 to 1G0 due to the antiresonances. In the other energy regions, electron transport
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is non-ballistic and the conductances show a power law decay. These results offer a possible
explanation for the experimental results.

It is important to point out that other factors, such as contacts between the sample and the
leads, and electron–electron interactions, may also significantly affect the electron transport
properties of the MWNTs. So, for a full understanding of the physical properties of the
MWNTs, taking more factors into account is necessary.
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